Determining the Dispersant-Viscosity Relationship or

How to make the world's best stick-up slip

Stage 1

- 1) Set up 10 containers
- 2) Put 200 grams of mixed dry clay body in each
- 3) Add 80 grams of water (preferably distilled water) to each; mix well to make a paste (a *very* thick slip). Record the amount of water. (40% d.w.b.)
- 4) Add drops of dispersant (Darvan 811, or a Sodium Silicate solution) to each sample in increments of 2 (e.g., 2 drops to container #1, 4 to container #2, etc.).
- 5) Mix each sample well, preferably with a motorized mixer.
- 6) Determine which sample is the most fluid
 - 6a) The most fluid sample should be too thin to be used as a stick-up slip. If not too thin, add water to thin the slip to a level that is not acceptable for stick-up slip use. Record the amount of water added, as noted above in step 3.)
 - 6b) If the most fluid sample is container #9 or #10, add 5-6 drops of dispersant to each of the 10 samples (to ensure that the most fluid sample is within the range of samples tested).

d.w.b. ≡dry weight basis d.w.b. = (water/dry clay)*100

Dispersants coat the surface of the clay particles making them repel each other reducing the viscosity of the suspension.

You should see a substantial change from high viscosity to low viscosity in Step 4. In Step 5, the suspensions should become more homogeneous.

More Fluid ≡Low Viscosity
Less Fluid ≡High Viscosity

(For casting bodies ignore staged 2!!!)

Stage 2

- 7) Prepare 10 samples of the most fluid suspension (identified in step 6) keeping the water and dispersant level constant for each sample. Total volume ~100 ml
- 8) Add drops of saturated Epsom salt (Mg SO₄·7H₂O) solution to each sample in increments of 1 drop.
- 9) Determine which sample has the best application thickness.
- 10) This is your final Stick-Up Slip with:
 - higher greenware adhesion
 - more fluidity for the water content
 - higher solids loading (much less shrinkage)
 - higher melt adhesion (more glass phase)

The addition of salt (Stage 2) should cause an increase in viscosity.

A saturated solution is one that contains undissolved salt in the container. For Epsom salts, this is $\sim 100g \ Mg \ SO_4 \cdot 7H_2O \ per \ 100g \ water.$

Consistency should match your application needs (i.e., brushing, dipping, trailing, etc.).

After completing this experiment, it is recommended to determine the water content in the stick-up slip for future reference.